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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TEC_n_ICAL MEMORANDUM x-758

STABILITY AND CONTROL CHARACTERISTICS

OF A O. 066?- SCALE MODEL OF THE FINAL VERSION OF THE

NORTH AMERICAN X-15 RESEARCH AIRPLANE (CONFIGURATION 3)

AT TRANSONIC SPEEDS

By Robert S. Osborne

SUMMARY
iv

In order to determine its static longitudinal and lateral-directional sta-

bility and control characteristics at transonic speeds, a O.0667-scale force model

of configuration 3 of the North American X-15 research airplane has been tested

in the Langley 8-foot transonic pressure tunnel. The test range included Mach

numbers from 0.60 to 1.18, angles of attack from -20 ° to 20° , and angles of side-

slip of -5.1 ° and 0°. The results of the investigation including a summary of

some of the important stability and control parameters are presented without

analysis.

INTRODUCTION

As part of the wind-tunnel program required for the development of the North

American X-15 research airplane, a 0.0667-scale force model of the final version

of the X-15 (configuration 3) has been tested in the Langley 8-foot transonic

pressure tunnel in order to determine its static stability and control character-

istics at transonic speeds. Tests of this model at Mach numbers from 2.29 to 4.65

are reported in reference 1. The results of pressure-distribution tests of a

model of a configuration nearly identical to that of configuration 3 at Mach num-

bers from 0.60 to 4.65 are presented in references 2 and 3. Other tests of force

models approximating configuration 3 are reported in references 4 to 7- Tests of

a force model of an earlier version of the X-15 (configuration l) in the Langley

8-foot transonic pressure tunnel are reported in reference 8.

The model was tested at Mach numbers from 0.60 to 1.18, at angles of attack

from -20 ° to 20 °, and at angles of sideslip of -5.1 ° and 0°. Drag, static lon-

gitudinal stability, and static lateral-directional stability were determined;

the effectiveness of the horizontal tail as a pitch and roll control and the

vertical tails as a yaw control was measured; and the effects of opening the

speed brakes on drag and static stability were obtained. The results of this



investigation including a summaryof someof the important stability and control
parameters are presented herein without analysis.

SYMBOLS

Longitudinal data are presented about the stability axes and lateral-
directional data are presented about the body axes for a center-of-gravity loca-
tion of 20 percent of the wing meanaerodynamic chord.

b wing span, in.

CD drag coefficient, D/qS

CD,o drag coefficient at zero lift

CL lift coefficient, L/qS

Cr(L/O) x lift coefficient for maximum lift-drag ratio

CL, t trim lift coefficient

_e

CL_

C_

CZ5 v

Cm

Cmc L

trim lift effectiveness parameter, per deg

lift-curve slope, per deg

rolling-moment coefficient, Mx/qSb

8cz

effective dihedral parameter_ _-_ per deg

rolling moment due to differential deflection of horizontal tail,

8cZ

_Sa, per deg

8c z

rolling moment due to vertical-tail deflection, _-_v' per deg

pitching-moment coefficient, My/qS_

_Cm

static longitudinal stability parameter, 8CL



Cm5e

C n

Cn_3

Cnsa

Cnsv

Cp,b

Cy

D

Fy

L

(L/D)m 

M

Pb

P

q

pitch effectiveness parameter at constant lift coefficient,

per deg

yawing-moment coefficient, Mz/qSb

static directional stability parameter,

yawing moment due to differential deflection of horizontal tail,

per deg

8Cn

yawing moment due to vertical-tail deflection, _v' per deg

base pressure coefficient,
Pb -P

q

lateral-force coefficient, Y/qS

wing mean aerodynamic chord, in.

force along Xs-axis, positive rearward, lb

lateral force, ib

lift, lb

maximum lift-drag ratio

free-streamMach number

moment about X-axis, in-lb

moment about Y-axis, in-lb

moment about Z-axis, in-lb

static pressure at model base, ib/sq ft

free-stream static pressure, Ib/sq ft

free-stream dynamic pressure, lb/sq ft

8C n

_a
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R

S

X,Y_Z

XB,Ys,ZS

5a

_e

_v

Reynolds number

total wing area, sq ft

body axes

stability axes

angle of attack of fuselage center line, deg

angle of sideslip, deg

differential deflection of horizontal tail when used as roll control,

positive when left-hand surface has more positive deflection,

(trailing edge down), deg

deflection of horizontal tail when used as pitch control (taken as

average of left- and right-hand surface deflections and positive

when trailing edge is down), deg

deflection of upper and lower vertical-tall surfaces, positive when

trailing edge is to left, deg

APPARATUS AND TESTS

Model

The X-15 is a rocket-powered research airplane designed for hypersonic

speeds at very high altitudes. It employs a 5-percent-thick low-aspect-ratio

trapezoidal wing mounted in the midposition on a fuselage consisting of a body

of revolution with large side fairings. The horizontal tail which has 45 ° sweep-

back of the quarter-chord line is all movable for pitch control and is deflected

differentially for roll control. The outboard panels of the upper and lower

vertical-tail surfaces are deflected for directional control; the inboard panels

are fixed and contain the speed brakes.

The O.0667-scale force model of the North American X-15 research airplane

used in this investigation was supplied by the contractor and was of stainless-

steel construction. Photographs of the model are presented in figure l, and

dimensional details are shown in figure 2 and table I.

The model represented configuration 3 of the X-I_. Features that distin-

guish this configuration from configuration i (ref. 8) include an increased

fuselage diameter, shortened fuselage side fairings, increased leading-edge

radii on wing and horizontal tail, wing shifted forward 3.6 inches (full scale)_

horizontal tail shifted rearward 5.4 inches (full scale), a larger vertical tail

having i0 ° full-wedge airfoil sections with the total exposed area distributed

4



about 55 percent above the fuselage and 4_ percent below, and reduced speed-

brake area. The contractor's code designation for the model tested was

B4w2x 4 vu Ju2V TJ 2•

The movable portions of the upper and lower vertical tails and both

horizontal-tail panels could be actuated remotely while the wind tunnel was in

operation. The speed brakes were maintained in the closed position or were

opened 35 ° relative to the closed position as indicated in figure 2. The speed-

brake hinge lines were located at the speed-brake leading edges and had 09

sweepback.

Tunnel and Model Support

The tests were conducted in the Langley 8-foot transonic pressure tunnel

which is a single-return rectangular slotted-throat wind tunnel having controls

that allowed for the independent variation of Mach number, stagnation pressure,

temperature, and humidity.

The model was attached to a sting support by an electrical strain-gage bal-

ance located inside the fuselage. The sting support was cylindrical for 2.4 base

diameters downstream of the model base and had a diameter of 0.5_ base diameter.

At its downstream endj the sting was attached to an arc-shaped support strut

which spanned the tunnel vertically. This support strut was rotated to obtain

changes in angle of attack; the center of rotation of the system was near the

model in order to minimize overall vertical motion of the model. Variations in

angle of sideslip were obtained by insertion of properly angled couplings in the

model support system.

Measurements and Accuracy

Model forces and moments were measured by a six-component internal strain-

gage balance. They were converted by automatic electrical computing equipment

to lift, drag, and pitching moment about the stability axes and to lateral force,

yawing moment, and rolling moment about the body axes. (See fig. 3.) The center

of gravity was located at 20 percent of the mesm aerodynamic chord based on the

total wing area. (See fig. 2.) At a Mach number of 1.O and a dynamic pressure

of 784 pounds per square foot, accuracies of the coefficients are estimated to

be:

CL ..oet...,ee ,oD e..oeo, .,oo...,..

CD.e-e,,oee,,De .. • o,,,,e,.,.,.,..,

Cm" I. io,.o,,,.o,...,.De.o.e e.,,oee

C_,i,..Q,e.,.o,o...o.e.,i,,.oeo,,o.

Cn,,,o.oe ., ,.ee....°.Q .D,,.,°.o,

Cy e_*,..o,,G.e..e.G.,,e.eo,...._e.

±0,01

±0.002

±0.002

±0.0005

±0.0005

±0.oo_
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The angle of attack was set to within ±0.i o by means of a pendulum-type

attitude indicator located in the nose of the model. The angles of sideslip

were determined to within ±0.2 ° by means of a calibration of sting and balance

deflection with respect to model lateral force and yawing moment. Horizontal-

and vertical-tail deflections were measured remotely by means of differential

transformers attached to the control-surface linkages and are estimated to be

accurate within ±0.2 ° . Speed-brake deflections are estimated to be accurate
within ±0.i °.

The Mach number was determined within ±0.003 from a calibration with

respect to the pressure in the chamber surrounding the slotted test section.

Base pressure coefficients were determined from an average of measurements

taken on the upper and lower portions of the base and are estimated to be

accurate within ±0.005.

Tests

The complete model was tested with horizontal-tail deflections for pitch

and roll control_ with vertical-tail deflections for yaw control, and with the

speed brakes open and closed. The model was also tested with the horizontal

tail removed, with the lower vertical tail removed, and with both vertical tails

removed. The detailed test program is indicated in table II.

The test range included Mach numbers from 0.60 to 1.18, angles of attack
from -20 ° to 20 °, and angles of sideslip of -5.1 ° and 0°. The tests were con-

ducted at a tunnel stagnation pressure of approximately I atmosphere. The

average test Reynolds number based on the wing mean aerodynamic chord varied

from approximately 2.2 X 106 to 2.8 X 106 over the Mach number range. (See

fig. 4.) For all tests_ O.l-inch-wide boundary-layer transition strips con-

sisting of No. 120 carborundum grains were installed along the 10-percent-chord

lines of the wing and tail surfaces and at i0 percent of the fuselage length.

Corrections

Tunnel-boundary interference at subsonic speeds is minimized by the slotted

test section, and no corrections for this interference have been applied. No

corrections are necessary for the effects of supersonic boundary-reflected dis-

turbances since they are negligible for Mach numbers up to approximately 1.03

(ref. 9), and the reflected disturbances pass well downstream of the base of

the model at a Mach number of 1.18.

With the use of the measured base pressure coefficients (shown for three coI_-

figurations in fig. _), the data presented have been adjusted to an assumed con-

dition of free-stream static pressure acting over the base of the fuselage. No

sting-interference corrections have been applied. However, as indicated from

the results of reference i0, errors in the drag data due to the presence of the

sting are estimated to be small and errors in the other coefficients are prob-
ably negligible.



RESULTSANDCONCLUSIONS

The results of an investigation of the stability and control characteristics
of a O.0667-scale model of the final version of the X-15 research airplane are
presented in the following figures:

Figures

Basic longitudinal data as functions of CL ............ 6 to 15
Basic lateral-directional data as functions of _ ........... 16 to 24
Longitudinal stability and control parameters ........... 25 to 27
Drag and maximumlift-drag-ratio parameters .............. 28
Lateral-directional stability and control parameters ....... 29 to 33

A more detailed index of the results presented is shownin table II.

The data indicate that the configuration investigated has generally satis-
factory static stability and control characteristics at the Machnumbersand
angles of attack tested. Notable exceptions, however, include a region of
neutral longitudinal stability at low negative angles of attack at Machnumbers
from 0.60 to 0.95 and excessive positive dihedral at high angles of attack at
Machnumbersabove 0.60.

Langley Research Centerj
National Aeronautics and SpaceAdministration,

Langley Station, Hampton, Va., November8, 1962.
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TABLE I.- DIMENSIONS OF O.0667-SCALE MODEL OF CONFIGURATION 3 OF

NORTH AMERICAN X-15 RESEARCH AIRPITkNE

Wing:

Airfoil section ...................... Modified NACA 66-005

Total area, sq in ........................... 127.728

Exposed area, sq in .......................... 66.816

Total span, in ............................ 17.87

Exposed span, in ........................... 11.968

Total aspect ratio .......................... 2.50

Exposed aspect ratio ......................... 2.15

Leading-edge sweepback, deg ...................... 36.75

Quarter-chord-line sweepback, deg .................. 25.64

Trailing-edge sweepforward, deg .................. 17.75

Root chord at center line, in ..................... 11.914

Exposed root chord, in ....................... 8.8

Tip chord_ in ............................. 2.383

Total taper ratio ........................... 0.20

Exposed taper ratio .................... 0.27

Mean aerodynamic chord based on total area, in ............ 8.207

Longitudinal distance from fuselage nose to total wing 0.20_, in. . . 22.76

Dihedral, deg ............................. 0

Incidence, deg ............................ 0

Horizontal tail (in plane of surface):

Airfoil section ...................... Modified NACA 66-005

Total area, sq in ........................... 73.850

Exposed area, sq in .......................... 32.832

Total span, in ............................ 14.978

Exposed span, in ........................... 9.008

Exposed aspect ratio ......................... 2.48

Leading-edge sweepback, deg ...................... 50.58

Quarter-chord-line sweepback, deg ................... 45

Trailing-edge sweepback, deg ................... 19.28

Root chord at center line, in ..................... 8.175

Exposed root chord, in ....................... 5.6

Tip chord, in ............................. 1.686

Exposed taper ratio .......................... 0.30

Mean aerodynamic chord based on exposed area, in .......... 3.986

Hinge line, percent exposed _ ..................... 25

Longitudinal distance from total wing 0.20_ to exposed tail

O.25_, in .............................. 12.461

Dihedral, deg ............................ -15

Upper vertical tail (exposed panel):

Airfoil section ........................... i0 ° wedge

Area, sq in ............................ 26.075

Span, in .............................. 3.669

Aspect ratio ........................... 0.52

Leading-edge sweepback, deg ...................... 30

Trailing-edge sweepback, deg .................. 0

9



TABLE I.- DIMENSIONS OF 0.0667-SCALE MODEL OF CONFIGURATION 3 OF

NORTH _ERICAN X-15 RESEARCH AIRPLANE - ConcLuded

Root chord, in ............................ 8.171

Tip chord, in ............................. 6.053

Taper ratio .............................. O. 74

Mean aerodynmnic chord, in ....................... 7.15_

Longitudinal distance from total wing 0.20_ to exposed panel

0.25_, in .............................. i0._09

Movable portion -

Area, sq in ............................. 16.848

Span, in .............................. 2. 482

Root chord, in .......................... 7.49

Tip chord, in ............................ 6. 053

Hinge line, percent exposed panel _ ................ 29

Speed brake (one side) -

Area, sq in ............................. 3. 514

Chord, in .............................. 2.6'(8

Average span, in .......................... i. 308

Lower vertical tail (exposed panel):

Airfoil section ........................... ]0 ° wedge

Area, sq in .............................. 22.476

Span, in ............................... _.085

Aspect ratio ............................. 0.42

Leading-edge sweepback, deg ...................... 30

Trailing-edge sweepback, deg ................... 0

Root chord, in ............................ 8.171

Tip chord_ in .......................... 6.4

Taper ratio .............................. 0.78

Mean aerodynamic chord_ in ...................... 7.321

Longitudinal distance from total wing 0.20_ to exposed panel

0.25_, in .............................. 10.144

Movable portion -

Area_ sq in ............................. 12.6

Span, in .............................. 1.881

Root chord, in ........................... 7.486

Tip chord_ in ............................ 6.4

Hinge line, percent exposed panel _ ................. 30

Speed brake (one side) -

Area, sq in ............................. 3.514

Chord, in .............................. 2.678

Average span, in .......................... 1.308

Fuselage:

Length, _n .............................. 39.36

Maxim_n depth, in ........................... 3.733

Maximum width with side fairings, in ................. 5.868

Maximum width without side fairings, in ................ 3.733

Fineness ratio without side fairings ................. 10.54

Base diameter, in ........................... 3.197
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TABLE IIo- INDEX OF FIGURES PRESENTING RESULTS

Figure

Longitudinal characteristics of:

Model with and without horizontal tail. _ = 0°; varying 5e ....... 6

Model at negative angles of attack. _ = 0o; be = 0° and i0 ° ...... 7

Model with and without vertical tails. _ = 0° . , . . . o . . . . . o . . 8

Model with speed brakes open and closed. _ = 0°; 8e = 0° ........ 9

Model with speed brakes open and closed. 8 = 0°; 5e = -i0 ° ........ I0

Model with varying be and with speed brakes open and closed. _ = 0°;

5a = 0°; 5v = -7.5 ° .......................... ii

Model with varying be and with speed brakes open and closed. _ = 0°;

8a = 20o; 5v = 0° ......................... 12

Complete model. 8 = 0° and -5.1°; be = 0° and -i0 ° ............ 13

Model with speed brakes open. _ = 0° and -5.1 ° ............ 14

Complete model. _ = 0° and-5.1°; 5v = -7.5 ° ....... 15

Lateral-directional characteristics of:

Model with speed brakes open and closed.

5e = 0° and -i0°; 8v = 0° and -7.5 °

Model with speed brakes open and closed.

5e = 0° and -i0°; 5v = 0° and -7.5 °

= 0°; 5a = 0o;

.................. 16

= -5.1°; 8a = 0°;

................. 17

Complete model. _ = 0° and -5.1 ° ................. 18

Model without lower vertical tail. _ = 0°'id'-5.1 ° .......... 19

Model without upper and lower vertical tails. _ = 0° and -5.1 ° ...... 20

Model with speed brakes open. _ = 0 ° and -5.1 ° ............. 21

Model with lower speed brakes open. _ = 0° and -5.1 ° .......... 22

Model with speed brakes open and closed. _ = 0°; 5a = 0° and 20o;

5e = 0° and -i0°; 5v = 0° ....................... 25

Complete model. 8 = -5.1°; 5a = 0° and 20o; 5e = 0° and -i0°;

5v = 0° ............................... 24

Summary curves:

Variation of llft-curve slopes with Mach number .............. 25

Variation of static longitudinal stability parameter with Mach number . . . 26

Variation of longitudinal control parameters with Mach number ....... 27

Variation of drag and maximum lift-drag-ratio parameters with Mach
number ................................ 28

Variation of directional stability parameter with Mach number ....... 29

Variation of effective dihedral parameter with Mach number ...... 30

Variation of lateral control parameters with Mach number ......... 31

Variation with Mach number of yawing moment due to vertical-tail

deflection .............................. 32

Variation with Mach number of rolling moment due to vertical-tail

deflection .............................. 33
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0 M=0.60

L

Complete model
Vertical tails off
Complete model ,brakes open

L ¢°
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I=O.e.

0M=0.93

0 V1=0.95

0 e= 1,03

0
_1=1,18
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Figure 5.- Base pressure coefficients for complete model and for model without vertical tails.

Surfaces undeflected unless otherwise noted. _ = 0 °.
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(a) M = 0.60.

Figure 6.- Longltudinal characteristics of model with various b e and of model without horizontal

tail; other surfaces undeflected. _ = 0 °.
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Surfaces undeflected except for horizontal tail as a roll control.
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